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Timeline
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Budget
 Total project funding: 

FY18  $4.0M
BAT252, BAT253(ANL, NREL, 

ORNL, LBNL)

Barriers
Development of PHEV and EV 

batteries that meet or exceed DOE 
and USABC goals
– Cost 
– Performance 
– Safety

 Oak Ridge National Laboratory
 National Renewable Energy 

Laboratory
 Lawrence Berkeley National   

Laboratory
 Argonne National Laboratory

Partners

Overview 



Project Objectives - Relevance

 High-performing, high-energy, safe and long-life batteries are needed 
to reduce petroleum consumption in vehicular applications
 Performance targets of plug-in electric vehicle (PEV) and electric 

vehicle (EV) batteries can be met by cells containing layered-oxide-
based positive electrodes 
 To achieve the energy and power density targets, cells with these 

electrodes must be cycled to voltages that exceed 4.5 V vs. Li/Li+
On extended cycling at these voltages, capacity loss, impedance rise 

and voltage fade reduce the cell’s energy and power output
Our goal is to examine the mechanisms associated with this loss in 

performance and to develop cell chemistries that enable operation 
over the 15 y life target set by the DOE-OVT

Energy and Power loss during calendar-life and 
cycle-life aging limits the commercial viability of 
lithium-ion cells for transportation applications
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Approach

 Determine factors that contribute to performance decline (capacity fade, impedance 
rise) in cells with layered-oxide (positive) and graphite (negative) electrodes
– Develop/use diagnostic tools and techniques to identify cell constituents and 

reaction mechanisms associated with this performance loss
 Identify additives, which when incorporated into our baseline electrolyte (Gen2), 

consisting of 1.2M LiPF6 in EC:EMC (3:7 w/w), reduces cell degradation
– Provide an understanding of electrolyte-additive mechanisms through closely-

coupled experimental and computational techniques
 Identify novel electrolyte systems that outperform the baseline Gen2 electrolyte

– Examine fluorinated electrolytes which are known for high-voltage stability
 Develop test protocols to examine oxidative stability of electrolytes

– Investigate and model the parasitic currents observed at high cell voltages
 Formulate experiments to examine the various crosstalk processes during cycling

– Identify effects of transition metals and gas generation on cell performance
 Report/publish experimental data to advance understanding of HE/HV cells 

– Document approaches/methodologies in presentations and publications 
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Multi-institutional effort to identify and solve performance loss 
problems in the high energy high voltage cells



Electrodes fabricated at the CAMP facility are 
used for various tests
Baseline Chemistry: NMC532 positive & graphite negative electrodes 
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Baseline Electrolyte
 1.2 M LiPF6 in 

EC/EMC (3:7)

Positive Electrode contains
 90 wt% NMC532 Oxide
 5 wt% C45 carbon
 5 wt% PVdF binder

1 µm

Negative Electrode contains
 92 wt% A12 Graphite
 2 wt% C45 carbon
 6 wt% PVdF binder

Technical Accomplishments and Progress



Developed coin cell assembly and cycling protocols to 
enable comparison of data generated by team members   
Protocol includes 3h hold at the UCV to accelerate aging
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Protocol provides information on cell 
capacity and impedance changes

Long et al., J. Electrochem. Soc. 163 (2016) A2999
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Protocol: 3–4.4 V w/3h hold at 4.4 V, 30 °C 

Aging of cells with the baseline chemistry leads to 
capacity loss and impedance rise 

Observations
 Positive electrode is main contributor 

to impedance rise
 Li-trapping in negative electrode SEI 

is main contributor to capacity fade
 Electrode potential window shifts 

observed on aging
–Reduces utilization of electrode 

active material
–Causes positive electrode to cycle 

at higher SOCs 0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

4.6
Increasing x in Li1-x(Ni0.5Mn0.3Co0.2)O2

Increasing x in LixGraphite 

Net 
Reduction

Vo
lta

ge
 v

s.
 L

i/L
i+ , 

V

Gilbert et al., J. Electrochem. Soc. 164 (2017) A6054Technical Accomplishments and Progress

Similar trends are observed in other layered oxide/graphite systems 
(e.g. NMC811/Gr, NMC622/Gr, NCA/Gr, etc.)



Cell capacity fade is accelerated by the deposition of 
transition metal elements in the negative electrode 
Transition metal dissolution from oxide is increases with UCV
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Impedance rise at positive electrode can be attributed to 
resistive surface films, particle isolation, etc. 

Gilbert et al., Adv. Mater. Interfaces 2018,1701447

Composition/impedance heterogeneity in electrode cross sections 
detected by Raman Spectroscopy
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Technical Accomplishments and Progress



Cathode impedance rise is accelerated by gases 
generated in cell during electrolyte oxidation reactions  

Rodrigues et al., J. Electrochem. Soc. 165 (2018) A1697

Reactions at the graphite electrode reduce gas content in cells  
Calendar aging, Reference electrode cells
NMC811 @ 4.48 V vs. Li/Li+, 30 °C

Li+ inventory gains in LTO cells is a consequence of 
electrolyte oxidation. Gr cells also gain capacity, but 
this gain is masked by Li+ ion inventory loss to SEI
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Significant gas evolution in pouch cells cycled at 
high voltage (NMC811//graphite) 
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Nickel-rich cathode mainly responsible for gas generation

Minimal gas generation in 3.0-4.2 V 
cycling window.
Significant gas generation in 3.0-4.4 V 
cycling window during the early cycles; 
gas depletion during the later cycles.

Technical Accomplishments and Progress Veith et al., article in preparation
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Electrolyte Sprints implemented to find possible solutions 
to performance degradation
Ideal electrolyte additives and fluorinated solvents would
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Anode additive Structure
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Figure of merit (FOM) methodology developed to identify 
promising electrolyte formulations

FOM-E: Number of cycles it takes until 80% 
of baseline energy density (Wh/kgoxide) 
reached. Only the tVCBO + TMSPi and VC + 
TMSPi additive combinations have an FOM-E 
better than that of the baseline electrolyte

Baseline
170

WorseBetter

FOM-E

WorseBetter

Baseline
23

FOM-P

FOM-P: Number of cycles it takes until  80% 
of baseline power density (mW/cm2) reached. 
Several electrolytes with TMSPi have FOM-P 
better than that of the baseline electrolyte

Numerical values allows easier comparison between various electrolytes
Additive compounds in baseline Gen 2 electrolyte

Tornheim et al., J. Power Sources 365C (2017) 201Technical Accomplishments and Progress
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Energy FOM vs. Power FOM
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24 Baseline 41 0.5 VC & 1.0 TMSPa 
40 1.0 VC & 1.0 TMSPi 38 1.0 TMSPi (2 wk old)
39 0.5 VC & 1.0 TMSPi 37 1.0 TMSPa 
35 Lit Sep + 1.0 TMSPi (1 wk old) 36 1.0 TMSPi (3 wk old)
34 1.0 TMSPi (1 wk old) 33 2.0 FEC & 1.0 TMSPi (1 wk old)
32 1.0 TMSPi 28 1.0 VC & 2.0 TMSPi 
31 0.2 tVCBO & 1.0 TMSPi 27 1.0 VC & 1.0 TMSPi (1 wk old)
30 2.0 VC & 1.0 TMSPi 26 0.25 tVCBO & 1.0 TMSPi (symm)
29 0.5 VC & 1.0 TMSPi & 0.5 TEPi 25 10.0 TMSPi (1 wk old)
22 Lit Sep 23 0.25 PBE & 1.0 TMSPi 
19 1.0 VC & 0.5 TMSPi 21 0.25 tVCBO 
16 0.5 TMSB 20 1.0 PES & 1.0 TMSPi 
15 1.0 TEPi 18 2.0 VC & 1.0 TEPi 
12 2.0 PES & 1.0 LiDFOB 17 2.0 VC & 1.0 TMSPi & 1.0 DME 
11 1.0 LiBOB & 2.0 LiDFOB 14 1.0 VC 
8 1.0 TMSB 13 1.0 VC & 1.0 TEPi 
3 0.25 PBE & 1.0 TEPi 10 1.0 LiBOB & 1.0 TEPi 
2 1.0 PES & 1.0 TEPi 9 1.0 LiBOB & 1.0 TMSPi 
1 0.3 PCl3 7 0.25 tVCBO & 2.0 LiDFOB 

6 2.0 VC & 2.0 LiDFOB 
5 0.25 tVCBO & 1.0 TEPi 
4 0.25 PBE & 2.0 LiDFOB 

Green formulations are 
better than the baseline

Energy FOM vs. Power FOM
Information can help identify relevant questions that need answers

 Why is TMSPi (32) better than TEPi (15)?
 Why does the 1wk aged TMSPi (34) show 

the highest Power FOM?

Technical Accomplishments and Progress



TMSPi (but not TEPi) is able to scavenge 
HF from electrolyte solutions
Water added to Baseline (Gen2) electrolyte to generate HF
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LiPF6 hydrolysis species are 
generated when water is added 
to the baseline electrolyte.
These species are also observed 
in solutions containing TEPi.
These species are not observed 
in solutions with TMSPi. Instead 
TMSF is observed (reaction with 
HF shown above).

19F NMR spectra
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Peebles et al., J. Electrochem. Soc. 164 (2017) A1579
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Cell performance improves after electrolyte is aged
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Lowest impedance rise for cells with “1-week old” electrolyte

Additives can react with the 
baseline electrolyte to form 
compounds that have 
beneficial or detrimental 
effects on cell life

P
OO

Si

Si

O
Si

NMC/532/Gr cells
Electrolyte:  Gen 2 w/ 1 wt% TMSPi
(aged for various periods)
3-4.4 V w/ 3h hold at 4.4 V

Peebles et al., J. Phys. Chem. C 122 (2018) 9811Technical Accomplishments and Progress



X = OSiMe3 PX3 → PFX2 → PF2X → PF3

PF6
- PO2F2

-

Me3SiF = TMSF

Only these two compounds are present 
in solution after 1 week  of aging

Starting
material

The TMSPi molecule itself is not involved directly in 
forming protection films on the oxide surface  
The active component, PF2OSiMe3, forms as lithium salt in the electrolyte 
reacts with TMSPi

PF2OSiMe3 molecules binding to reaction centers
on the oxide particle surface. For the ball-and-stick
molecules attached to cathode surface, olive
green indicates phosphorus (P); purple, fluorine
(F); red, oxygen (O); gold, silicon (Si); structure
above Si is the methyl group (CH3).

Proposed Mechanism - based on experimental 
observations and computational studies
 Physisorption of PF2OSiMe3 on oxide. PF2OSiMe3 

makes a bond with TM ion leaving behind a vacancy.
 PF2OSiMe3 reacts with PF6

- and transforms to 
PF5OP(F2). There is O-F exchange between the 
PF5OP(F2) and the oxide surface leading to formation 
of OPF2-O-PF2O, which caps the TM ion catalytic 
center, thus preventing further oxidation of the solvent.

Peebles et al., J. Phys. Chem. C 122 (2018) 9811Technical Accomplishments and Progress
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“In situ” synthesis of Moisture Sensitive Additives
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Additives are formed through reactions with the electrolyte salt
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C. Liao et al. US Patent Application No. 16/175,497 (2019) 



20

Fluorinated electrolytes lower rate of electrolyte oxidation
“Oxophilic” components increase oxygen loss and rock-salt behavior, “oxophobic” 
components limit degradation.  Oxygen loss manifests as a higher oxidation current.
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“Oxophilic” electrolyte 
shows higher oxidation rate 
during high voltage holds

EELS of cathode 
surface after high 
voltage hold shows 
changes in O peaks 
that correlate with M 
oxidation state

Oxophilic electrolytes show high 
decomposition currents and cause 
substantial oxygen loss from the oxide 
surface (~25 nm degradation layer). 
Oxophobic (fluorinated) electrolytes 
show less surface degradation and 
lower rates of electrolyte oxidation.

Tornheim et al., Nano Energy 15 (2019) 216Technical Accomplishments and Progress

See also BAT252
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Summary
 Developed coin cell assembly and cell cycling protocols to enable comparison of data 

generated by various team members
– Information has been published and feedback from the battery community has been very positive

 Demonstrated that the causes of performance degradation in various layered oxide-graphite 
systems (NMC532/Gr, NMC811/Gr, NCA/Gr, etc.) are similar

– The positive electrode is main contributor to cell impedance rise and Li loss in the graphite negative 
is mainly responsible for capacity fade

 Showed that electrode crosstalk plays in important role in degradation of cell performance
– Developed mechanisms to explain the detrimental effect of Mn ions in the graphite SEI

 Revealed that the accumulation of gases (generated at the positive electrode during high 
voltage cycling) increases cell impedance rise 

– Combination of electrolyte oxidation at high (layered-oxide) potentials and electrolyte-reduction at low 
(lithiated-graphite) potentials can lead to electrolyte depletion, which can severely degrade cell 
performance and life

 Developed Energy and Power Figure of Merit (FOM) criteria and identified electrolyte 
additive combinations that outperformed the baseline (Gen2) electrolyte

– Used the FOM criteria to define questions for detailed study of interfacial mechanisms

 Demonstrated that additive compounds can be altered by reactions with the electrolyte
– Some reaction products mitigate cell performance loss, while others accelerate degradation

 Concept of additive reactions with electrolyte has been used to for insitu synthesis of 
compounds that are otherwise difficult to prepare

– Some of these insitu synthesized compounds have beneficial effects on cell performance and life
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Future Work

 Standardization of cell assembly and cycling protocols is important
– Protocols for new program are based on “lessons learned”

 Figure-of-Merit criteria can be used to compare performance of the Next-
Gen layered-oxide compounds under development
– Energy and Power Performance are common themes for transportation

 Cell performance degradation can be studied with the various diagnostic 
tools and methodologies developed in the project
– Electrochemical (3-electrode cells, symmetric cells) and physicochemical 

(XRD, HR-TEM, XAS, gas analysis, etc.) techniques will continue to guide the 
selection of electrode and electrolyte materials for high-performance cells

 Computational methodologies will continue to provide information on 
materials and mechanisms 
– Physicochemical models can be used to examine the effect of electrode and 

cell parameters and atomistic models can be applied to examine/explain 
mechanisms/process at the electrode/electrolyte interfaces   

Concepts and ideas developed during project can be applied 
to next-gen cathode program
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Response to Previous Year Reviewers’ Comments
Three reviewers commented on our presentation. We are grateful for 
their thoughtful comments. Selected excerpts are given below.
 The reviewers’ comments were generally positive.

– “project is very important and extremely relevant to DOE objectives”
– “proceeds in a logical manner with a wide array of characterization techniques”
– “excellent strides toward understanding of electrolyte additive function”
– “great insights to understand interfacial reactions between electrolyte and electrode”

 One reviewer indicated that “it would be particularly desirable to share the protocol for 
determining these figures of merit (FOMs) with the community to standardize such 
evaluations.” We agree. Our work has been published in the open literature and the 
protocol/methodologies are available to the community.
 Another reviewer noted that more fundamental surface studies needs to be done in 

understanding electrolyte additive mechanisms. We agree. During the past fiscal year, 
through closely coupled fundamental science experiments and computational models we 
revealed that it is not the TMSPi additive that protects the oxide surface, but rather a derivate 
(PF2OSiMe3) formed by reactions of the compound with the electrolyte salt. These reactions 
leads to the gradual replacement of the TMS groups with F.
 Another reviewer suggested that we examine the evolution of the electrode/electrolyte 

interfaces with techniques such as high-resolution transmission electron microscopy. We did 
use HRTEM and EELS techniques to determine that oxides cycled in oxophobic (fluorinated) 
electrolytes release less oxygen and show minimal surface degradation. 
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Electrolyte additives alter cell performance

35

Large datasets generated even from testing 16 different electrolyte 
chemistries. How to identify chemistries that outperform the baseline?
Differential capacity plots: 1st charge Discharge capacity vs. cycle number ASI vs. V as a function of aging

Gen2 electrolyte (EC:EMC (3:7 w/w) + 1.2 M LiPF6) data shown in grey in all plots



Electrolyte additives alter gas evolution behavior 
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All additives suppressed initial spike in gas generation 
Cells with 2 wt.% VC show gradual rise in gas volume 



Symmetric cells contain gases not observed in full cells
GC-MS of symmetric Gr//Gr and NMC811//NMC811 pouch cells 
provides evidence for cross-talk.
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‒ Alkenes generated at the anode react at the cathode. 
‒ CO2 and fluorocarbons generated at the cathode react at the anode.
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Additive family and substituent group influences 
electrode interactions
TMS groups form surface layers on cathode (unlike ethyl and triethyl groups), 
phosphites have tendency to be oxidized at high voltage

296 292 288 284 280
0
5

10
15
20
25
30
35

540 536 532 528
0

1

2

3

4

5

6

7

692 688 684 680
0

2

4

6

8

10

12

144 140 136 132 128
0.0

0.4

0.8

1.2

1.6CF2 (PVDF) d)c)

b)

P2pF1s

O1s

at
.%

/e
V

 Pristine
 Baseline
 1%TMSPa
 0.5%TEPi
 1% TTFPi
 1% TMSPi
 1%TTFPa

C1s
a) C-C

CF2 (PVDF)

M-O

at
.%

/e
V

B.E. (eV) B.E. (eV)

LixPFy

PO3/4

TMSPi and TMSPa show substantial O and P 
enrichment over ethyl and fluoroethyl substituent 
additives on cathode surface.

0 20 40 60
0.1

1

10

100

C
ur

re
nt

 (µ
A)

Time (hours)

 Gen2
 1% TEPi
 1% TMSPi
 1% TMSPa
 0.5% TEPi
 1% TTFPi
 1% TTFPa

Increased O 
and P 
content from 
TMS groups

Influence of phosphite/phosphate additive on 
oxidation current during potentiostatic hold

Influence of phosphite/phosphate additive 
surface atomic environment (XPS) after hold

Phosphates have lower oxidation currents than 
phosphites (phosphites can be oxidized)
TMSPi has lower current than other phosphites.

TMSPi forms a P and O rich film on the surface, and 
has a lower oxidation rate than other phosphites.

Tornheim et al., J. Electrochem. Soc. 166 (2019) A440



Graphite preformed with FE-3 enhances baseline 
electrolyte performance
Baseline Gen2 electrolyte shows better stability in both cycling and 
impedance rise when paired with FE-3 preformed graphite
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Graphite preformed with FE-3 (FE-3 SEI) 
shows substantially better capacity retention 
and lower impedance rise
Anode SEI influence on impedance rise 
(cathode/electrolyte interface) indicates 
crosstalk is a contributor to impedance rise

Influence of preforming electrolyte identity on 
capacity retention and coulombic efficiency

Influence of preforming electrolyte 
identity on impedance rise


	Enabling High-Energy/High-Voltage Lithium-ion Cells for transportation:�project completion highlights, part 2
	Slide Number 2
	Project Objectives - Relevance
	Approach
	Electrodes fabricated at the CAMP facility are used for various tests
	Developed coin cell assembly and cycling protocols to enable comparison of data generated by team members   
	Aging of cells with the baseline chemistry leads to capacity loss and impedance rise 
	Cell capacity fade is accelerated by the deposition of transition metal elements in the negative electrode 
	Impedance rise at positive electrode can be attributed to resistive surface films, particle isolation, etc. 
	Cathode impedance rise is accelerated by gases generated in cell during electrolyte oxidation reactions  
	Significant gas evolution in pouch cells cycled at high voltage (NMC811//graphite) 
	Electrolyte Sprints implemented to find possible solutions to performance degradation
	Figure of merit (FOM) methodology developed to identify promising electrolyte formulations
	Energy FOM vs. Power FOM
	Energy FOM vs. Power FOM
	TMSPi (but not TEPi) is able to scavenge HF from electrolyte solutions
	Cell performance improves after electrolyte is aged
	Slide Number 18
	“In situ” synthesis of Moisture Sensitive Additives
	Fluorinated electrolytes lower rate of electrolyte oxidation
	Summary
	Future Work
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Contributors and Acknowledgment
	Technical backup Slides
	Electrolyte additives alter cell performance
	Electrolyte additives alter gas evolution behavior 
	Symmetric cells contain gases not observed in full cells
	Additive family and substituent group influences electrode interactions
	Graphite preformed with FE-3 enhances baseline electrolyte performance
	Reviewer-Only Slides

